MySql逻辑架构

1. Mysql逻辑架构剖析

1.1 服务器处理客户端请求

以查询请求为案例,服务端对客户端的请求处理如下:

image-20220418085533068

1.2 第一层:连接层

系统(客户端)访问 MySQL 服务器前,做的第一件事就是建立 TCP 连接。

经过三次握手建立连接成功后, MySQL 服务器对 TCP 传输过来的账号密码做身份认证、权限获取。

  • 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行

  • 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依赖于此时读到的权限

TCP 连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。

1.3 第二层:服务层

  • SQL Interface: SQL接口

    • 接收用户的SQL命令,并且返回用户需要查询的结果。比如SELECT … FROM就是调用SQL Interface

    • MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定义函数等多种SQL语言接口

  • Parser: 解析器

    • 在解析器中对 SQL 语句进行语法分析、语义分析。将SQL语句分解成数据结构,并将这个结构传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的。如果在分解构成中遇到错误,那么就说明这个SQL语句是不合理的。

      词法分析:你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。 MySQL 从你输入的”select”这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。

      语法分析:语法分析器(比如:Bison)会根据语法规则,判断你输

      入的这个 SQL 语句是否 满足 MySQL 语法 。

    • 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建语法树 ,并根据数据字典丰富查询语法树,会验证该客户端是否具有执行该查询的权限 。创建好语法树后,MySQL还会对SQl查询进行语法上的优化,进行查询重写。

  • Optimizer: 查询优化器

    • SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个执行计划 。

    • 这个执行计划表明应该使用哪些索引进行查询(全表检索还是使用索引检索),表之间的连接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将查询结果返回给用户。

    • 它使用选取-投影-连接策略进行查询。例如:

      1
      select * from student where gender ='女'

      这个SELECT查询先根据WHERE语句进行选取 ,而不是将表全部查询出来以后再进行gender过滤。 这个SELECT查询先根据id和name进行属性投影 ,而不是将属性全部取出以后再进行过滤,将这两个查询条件 连接起来生成最终查询结果。

  • Caches & Buffers: 查询缓存组件

    • MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过程了,直接将结果反馈给客户端。

    • 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等 。

    • 这个查询缓存可以在不同客户端之间共享

    • MySQL 5.7.20开始,不推荐使用查询缓存,并在 MySQL 8.0中删除 。

1.4 第三层:引擎层

插件式存储引擎层(Storage Engines),真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。

MySQL8默认支持以下的存储引擎如下:

image-20220418104305891

1.5 第四层:存储层

所有的数据,数据库、表的定义,表的每一行的内容,索引,都是存在 文件系统 上,以 文件 的方式存在的,并完成与存储引擎的交互。当然有些存储引擎比如InnoDB,也支持不使用文件系统直接管理裸设备,但现代文件系统的实现使得这样做没有必要了。在文件系统之下,可以使用本地磁盘,可以使用DAS、NAS、SAN等各种存储系统。

2. 数据库缓冲池(buffer pool)

InnoDB 存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内存来作为数据缓冲池 ,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访问。

这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/O 的时间 。要知道,这种策略对提升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。

2.1 缓冲池VS查询缓存

缓冲池:在 InnoDB 存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,包括:数据页、索引页、插入缓冲、锁信息、自适应 Hash 和数据字典信息等。

查询缓存:是提前把查询结果缓存 起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表发生变化,查询缓存就会失效,因此命中率低。

2.2 缓冲池如何读取数据

缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。

2.3 查看/设置缓冲池的大小

查看:

1
show variables like 'innodb_buffer_pool_size';

缓冲池的value值以bit为单位

修改:

1
set global innodb_buffer_pool_size = 268435456;